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Traveling Wave Solutions for a Class
of One-Dimensional Nonlinear Shallow
Water Wave Models

Chongsheng Cao,1,2 Darryl D. Holm,3,4 and Edriss S. Titi5,6
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In this paper we consider a class of one-dimensional nonlinear shallow water
wave models that support weak solutions. We construct new traveling wave
solutions for these models. Moreover, we show that these new traveling wave
solutions are stable.
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1. INTRODUCTION

In this paper, we shall study traveling wave solutions for a set of one-
dimensional nonlinear, nonlocal, evolutionary partial differential equa-
tions. This class of equations originally arose at quadratic order in
the asymptotic expansion for shallow water waves [4,10]. The famous
Korteweg–de Vries equation – which is nonlinear, but local – arises
uniquely at linear order in this shallow water wave expansion. At qua-
dratic order, a broad class of asymptotically equivalent equations arises
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[10], including the class that we shall investigate. Remarkably, three-dimen-
sional incompressible versions of these equations also arose in recent stud-
ies of the turbulence closure problem, obtained by averaging the exact
fluid equations at constant Lagrangian coordinate, then making the Tay-
lor hypothesis for frozen-in turbulence [5–8,12,13,15,16,18,21,22,25]. We
shall restrict our present considerations to one-dimensional equations.

We shall consider the following Cauchy problem on the whole line, R:

ut +uux = −τx, (1)

τ = 1
2

∫ (
βu2(y)+ α2

2
u2

y(y)

)
e−|x−y|/αdy, (2)

u(x,0) = u0(x), (3)

where α2 �0 is a constant, β �0 is a bifurcation parameter, and u0(x) is
the initial condition.

Notice that

(i) For α2 =β = 0, the system (1)–(3) becomes the inviscid Burgers
equation (cf. [3,20,23]).

(ii) For β = 0 and α2 > 0, the system (1)–(3) becomes the inviscid
Burgers-Alpha equations (cf. [19]).

(iii) For β = 1 and α2 > 0, the system (1)–(3) becomes the inviscid
one dimensional Camassa–Holm (CH) equation (cf. [4]).

Starting from the pioneering work of Burgers [3,23] and Hopf [20]
the Burgers equation (especially, the viscous Burgers–Hopf equation) has
always been used as a simple model to study shocks, turbulence and other
nonlinear phenomena in fluids (see, for example, [11,24,26] and refer-
ences therein). The system (1)–(3) is a nonlocal nonlinear deformation of
the Burgers equation. However, the qualitative nature of the solutions to
(1)–(3) are very different from those of the Burgers equation. First, the
solutions for the Burgers equation blow up, in finite time, if the initial data
has a negative slope. Specifically, the slope of any such solution becomes
infinite in finite time and the function becomes discontinuous. In partic-
ular, the H 1 Sobolev norm, [1], of the solution blows up in finite time.
On the other hand, the H 1 Sobolev norm of the solutions to (1)–(3) is
conserved. In [27], the authors used this very fact to show the global exis-
tence of the weak solutions to the one dimensional CH equation, to which
Eqs. (1)–(3) restrict for the case β =1. (A weak solution u is defined as a
solution that satisfies the equation in the distribution sense and which also
belongs to C([0, T ];H 1), for every T >0.)

Second, unlike the Burgers equation, the CH equation that arises
from Eqs. (1)–(3) for the case β = 1 admits special solutions, namely the
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peakons, (cf. [4])

u(x, t)=
N∑

i=1

Pi(t)e
−|x−Qi(t)|/α. (4)

In this expression for the CH peakon solutions to (1)–(3) for the case
β =1, the parameters Pi(t) and Qi(t) for i =1,2, . . . ,N satisfy the canon-
ical Hamiltonian equations,

dQi/dt = ∂H/∂Pi and dPi/dt =−∂H/∂Qi, i =1,2, . . . ,N,

with Hamiltonian,

H = 1
2

N∑
i,j=1

Pi(t)Pj (t)e
−|Qi(t)−Qj (t)|/α.

The CH peakons (4) for the case β = 1 in Eqs. (1)–(3) are soliton solu-
tions. Consequently, they dominate the corresponding initial value problem
(cf. [4,14]). The CH initial value problem is solved via the inverse scatter-
ing transformation (IST) method using the isospectral eigenvalue problem
for the CH equation that was discovered in [4]. For any initially confined
distribution of fluid velocity u0(x), the CH isospectral problem was shown
in [4] to possess purely discrete spectrum with eigenvalues ci, i = 1,2, . . . .
These eigenvalues correspond to the asymptotic speeds of the peakons,
ci = limt→∞ Pi(t). For more discussion of the CH initial value problem,
see [2,4,14]. In [9], the authors also proved that the single CH peakon
traveling wave solution for β =1,

u(x, t)= ce−|x−ct |/α, (5)

is stable. As a result of this stability, one can conclude that the single pea-
kon solution is unique. However, regardless of the special peakon solutions
(4) that exist for finite N , the question of uniqueness for weak solutions to
the one-dimensional CH equation as a partial differential equation is still
open [27].

In this article we shall consider the system (1)–(3) which is similar to
the CH equation. Indeed, one can follow the proofs of [27] to show the
existence of the weak solutions, i.e., solutions u that satisfy the equation
in the distribution sense and which also belong to C([0, T ]; H 1), for every
T >0. Here, we shall show the existence of traveling wave solutions for the
system (1)–(3) for every α2 >0 and 0�β �1. As an immediate corollary of
[9], one can show that this traveling wave solution is also stable.

Without loss of generality, we shall assume in what follows that α2 =1
and 0�β <1. The limit case β =1 recovers the single peakon (5).
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2. TRAVELING WAVE SOLUTION

Before we state our main Theorem, we need the following basic tech-
nical Lemma.

Lemma 2.1. Let {ξk}∞k=1 be a sequence of positive real number defined
by induction:

ξ1 = 1, (6)

ξk =
∑

i+j=k;i,j � 1

(
1
2

− β + ij /2
k2 −1

)
ξiξj for k �2. (7)

Denote by

f (x)=
∞∑

k=1

ξkxk.

Then, there is x∗ >0, such that f is well defined on |x|<x∗. Moreover, f (x)

has a continuous extension such that f (x∗)=1, or limx→x∗− f (x)=1.

Proof. Let {ηk}∞k=1 be a sequence of positive real number defined by
induction:

η1 =1,

ηk =
∑

i+j=k;i,j � 1

1
2
ηiηj for k �2.

Denote by

g(x)=
∞∑

k=1

ηkx
k.

It is clear that ξk �ηk, for k =1,2, . . . . By the definition we have

g(x)=1− (1−2x)1/2.

In other words g is well defined on (−1/2,1/2). Therefore, f is well
defined, at least, on (−1/2,1/2). Let x∗ be the radius of the convergence
for f . Next, let us show that f (x) has a continuous extension such that
f (x∗)=1. Namely, limx→(x∗)− f (x)=1. Denote by

h(x)=
∞∑

k=2


 ∑

i+j=k;i,j � 1

β + ij /2
k2 −1

ξiξj


xk.
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Therefore,

f −x = 1
2
f 2 −h.

By simple calculation we have, for |x|<x∗,

h(x)= βx

2

∫ x

0

f 2

y2
dy + x

4

∫ x

0
(f ′)2dy − β

2x

∫ x

0
f 2dy − 1

4x

∫ x

0
y2(f ′)2dy.

Moreover, we obtain

f ′′ + xf ′ −f

x2
= ff ′

x
−
(

1
2

+β

)
f 2

x2
+ 1

2
f ′2 +ff ′′. (8)

Since our purpose is to prove limx→(x∗) −f (x) = 1, let us assume that
x >0. By changing variable x = ez, we have

df

dx
= 1

x

df

dz

d2f

dx2
= 1

x2

d2f

dz2
− 1

x2

df

dz
.

As a result, Eq. (8) can be rewritten to

d2f

dz2
−f =f

d2f

dz2
+ 1

2

(
df

dz

)2

−
(

1
2

+β

)
f 2.

Notice that the above ODE is explicit independent of z. Thus, by assum-
ing that df/dz=F(f ), as an ansatz, we reach

(1−f )F (f )
dF

df
− 1

2
F 2(f )=f −

(
1
2

+β

)
f 2.

Solving the above first-order ODE to obtain

df

dz
=F(f )=

(
1−λ2f

1−f

)1/2

f,

where we define λ=
(

1+2β
3

)1/2
. Therefore,

(
1−f

1−λ2f

)1/2 df

f
=dz= dx

x
.

By changing variable f = (1− z2)/(1−λ2z2), we have

2(λ2 −1)z2dz

(1− z2)(1−λ2z2)
= dx

x
.
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Solving the above first-order ODE to obtain an implicit analytic formula
for function f :

4(1−λ)
1
λ
−1

(1+λ)
1
λ
+1

(
(1−λ2f )1/2 +λ(1−f )1/2

(1−λ2f )1/2 −λ(1−f )1/2

)1/λ
(1−λ2f )1/2 − (1−f )1/2

(1−λ2f )1/2 + (1−f )1/2
=x,

for x >0. Denote by

G(y) = 4(1−λ)
1
λ
−1

(1+λ)
1
λ
+1

(
(1−λ2y)1/2 +λ(1−y)1/2

(1−λ2y)1/2 −λ(1−y)1/2

)1/λ

× (1−λ2y)1/2 − (1−y)1/2

(1−λ2y)1/2 + (1−y)1/2
.

By direct calculation we have

G′(y)= (1−λ2y)2
(

1−y

1−λ2y

)1/2
G(y)

y
>0 for 0<y <1. (9)

By the Implicit Function Theorem, we conclude that f is well defined in

|x|<x∗ = 4(1−λ)
1
λ
−1

(1+λ)
1
λ
+1

(10)

and

lim
x→x∗−

f (x)=1.

Since ξk �0, k =1,2, . . . , one can easy to check that
∞∑

k=1

ξk(x
∗)k =f (x∗)=1.

Theorem 2.2. For every q >0, denote by

ak = (x∗)kξk q for k �1, (11)

where ξk and x∗ are as in (6), (7) and (10), respectively. Let

us(x, t)=p(x −qt)

with

p(x)=
∞∑

k=1

ake
−k|x|.

Then u is a solution of the system (1)–(3) in the weak sense.
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Proof. We need to check that us satisfies Eqs. (1) and (2). Notice
that

(us)t =−qp′ and (us)x =p′.

As a result, p should be a solution of the following equations in order
that us satisfies Eqs. (1) and (2)

−qp′ + (p2/2+ τ)=0, (12)

τ − τ ′′ =βp2 + 1
2
(p′)2. (13)

Notice that in case that

p(x)=
∞∑

k=1

ake
−k|x|,

we get

τ(x)=
∞∑

k=1

τke
−k|x|,

with

τ1 =
∞∑

k=2


 k

k2 −1

∑
i+j=k

(β + ij/2)aiaj




τk =− k

k2 −1

∑
i+j=k

(
β + ij

2

)
aiaj for k =2,3, . . . .

As a result (12) and (13) are equivalent to {ak}∞k=1 satisfy

−qak +
∑

i+j=k

(
1
2

− β + ij/2
k2 −1

)
aiaj =0, for k �2,

−qa1 +
∞∑

k=2


 k

k2 −1

∑
i+j=k

(β + ij/2)aiaj


=0,

By (11) and definition of {ξk}∞k=1, we conclude that the above are true if

∞∑
k=2


 k

k2 −1

∑
i+j=k

(β + ij/2)ξiξj


x∗k−1 =1.
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Denote by

�(x)=
∞∑

k=2


 k

k2 −1

∑
i+j=k

(β + ij/2)ξiξj


xk−1.

It is clear that �(x)=h′(x), for |x|<x∗. By (8), we have h′(x)= 1 + (1 −
f (x))f ′(x), for |x|<x∗. By (9), we have

lim
x→x∗−

(1−f (x))f ′(x)=0.

Figure 1. The traveling wave profile p(x) for β =1/2 and β =0.
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Figure 2. The zoom in profile for the traveling wave p(x) near x =0 for β =1/2 and β =0.

Therefore,

lim
x→x∗−

�(x)= lim
x→x∗−

h′(x)=1.

Since ξk �0, k =1,2, . . . , one can easy to check that

∞∑
k=2


 k

k2 −1

∑
i+j=k

(β + ij/2)ξiξj


xk−1 =�(x∗)=1.

This completes the proof.
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Figure 3. The coefficients ak in the traveling wave p(x) for β =1/2 and β =0.

Corollary 2.3. The solution in Theorem 2.2 is stable. Namely, let ε >0
be given, and let u ∈ C([0, T ];H 1(R)) be a solution to the system (1)–(3)

with initial data u0 satisfying

‖u0 −qp‖H 1 <Cε4,

then,

‖u(t)−qus‖H 1 <ε.

Here C is a positive constant.
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Proof. First, notice that, under the solutions of (1)–(3)

E(u) :=
∫ (

u2 +u2
x

)
dx and F(u) :=

∫ (
4
3
u3 +uux

)
dx

are conserved. Then one follows the techniques developed in [9] to com-
plete the proof.

In the Figures 1 and 2 we plot some of the profiles of the traveling
wave solutions to illustrate the pronounced nonsmooth peak in the solu-
tion. Figure 3 indicates the algebraic decay rate of the coefficients ak.
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